

Twomemo - Backend implementation of the urn:xmpp:omemo:2 namespace for python-omemo.

Backend implementation for python-omemo [https://github.com/Syndace/python-omemo], equipping python-omemo with support for OMEMO under the namespace urn:xmpp:omemo:2 (casually/jokingly referred to as “twomemo”).

	Installation

	Getting Started

	API Documentation
	Module: etree

	Module: twomemo
	Twomemo
	Twomemo.__init__()

	Twomemo.namespace

	Twomemo.load_session()

	Twomemo.store_session()

	Twomemo.build_session_active()

	Twomemo.build_session_passive()

	Twomemo.encrypt_plaintext()

	Twomemo.encrypt_empty()

	Twomemo.encrypt_key_material()

	Twomemo.decrypt_plaintext()

	Twomemo.decrypt_key_material()

	Twomemo.signed_pre_key_age()

	Twomemo.rotate_signed_pre_key()

	Twomemo.hide_pre_key()

	Twomemo.delete_pre_key()

	Twomemo.delete_hidden_pre_keys()

	Twomemo.get_num_visible_pre_keys()

	Twomemo.generate_pre_keys()

	Twomemo.get_bundle()

	Twomemo.purge()

	Twomemo.purge_bare_jid()

	AEADImpl
	AEADImpl.AUTHENTICATION_TAG_TRUNCATED_LENGTH

	AEADImpl._get_hash_function()

	AEADImpl._get_info()

	AEADImpl.encrypt()

	AEADImpl.decrypt()

	AEADImpl.__annotations__

	BundleImpl
	BundleImpl.__init__()

	BundleImpl.namespace

	BundleImpl.bare_jid

	BundleImpl.device_id

	BundleImpl.identity_key

	BundleImpl.__eq__()

	BundleImpl.__hash__()

	BundleImpl.bundle

	BundleImpl.signed_pre_key_id

	BundleImpl.pre_key_ids

	ContentImpl
	ContentImpl.__init__()

	ContentImpl.empty

	ContentImpl.make_empty()

	ContentImpl.ciphertext

	DoubleRatchetImpl
	DoubleRatchetImpl.MESSAGE_CHAIN_CONSTANT

	DoubleRatchetImpl._build_associated_data()

	DoubleRatchetImpl.__annotations__

	EncryptedKeyMaterialImpl
	EncryptedKeyMaterialImpl.__init__()

	EncryptedKeyMaterialImpl.bare_jid

	EncryptedKeyMaterialImpl.device_id

	EncryptedKeyMaterialImpl.encrypted_message

	EncryptedKeyMaterialImpl.serialize()

	EncryptedKeyMaterialImpl.parse()

	KeyExchangeImpl
	KeyExchangeImpl.__init__()

	KeyExchangeImpl.identity_key

	KeyExchangeImpl.builds_same_session()

	KeyExchangeImpl.header

	KeyExchangeImpl.signed_pre_key_id

	KeyExchangeImpl.pre_key_id

	KeyExchangeImpl.is_network_instance()

	KeyExchangeImpl.serialize()

	KeyExchangeImpl.parse()

	MessageChainKDFImpl
	MessageChainKDFImpl._get_hash_function()

	PlainKeyMaterialImpl
	PlainKeyMaterialImpl.KEY_LENGTH

	PlainKeyMaterialImpl.__init__()

	PlainKeyMaterialImpl.key

	PlainKeyMaterialImpl.auth_tag

	PlainKeyMaterialImpl.make_empty()

	PlainKeyMaterialImpl.__annotations__

	RootChainKDFImpl
	RootChainKDFImpl._get_hash_function()

	RootChainKDFImpl._get_info()

	SessionImpl
	SessionImpl.__init__()

	SessionImpl.namespace

	SessionImpl.bare_jid

	SessionImpl.device_id

	SessionImpl.initiation

	SessionImpl.confirmed

	SessionImpl.key_exchange

	SessionImpl.receiving_chain_length

	SessionImpl.sending_chain_length

	SessionImpl.associated_data

	SessionImpl.double_ratchet

	SessionImpl.confirm()

	StateImpl
	StateImpl.INFO

	StateImpl.IDENTITY_KEY_ENCODING_LENGTH

	StateImpl._encode_public_key()

	StateImpl.__annotations__

Installation

Install the latest release using pip (pip install twomemo) or manually from source by running pip install . in the cloned repository.

Getting Started

No further preparation is required to get started with this backend. Create an instance of Twomemo and pass it to python-omemo [https://github.com/Syndace/python-omemo] to equip it with urn:xmpp:omemo:2 capabilities.

Users of ElementTree can use the helpers in Module: etree for their XML serialization/parsing, which is available after installing xmlschema [https://pypi.org/project/xmlschema/], or by using pip install twomemo[xml]. Users of a different XML framework can use the module as a reference to write their own serialization/parsing.

Package: twomemo

	Module: etree

	Module: twomemo
	Twomemo
	Twomemo.__init__()

	Twomemo.namespace

	Twomemo.load_session()

	Twomemo.store_session()

	Twomemo.build_session_active()

	Twomemo.build_session_passive()

	Twomemo.encrypt_plaintext()

	Twomemo.encrypt_empty()

	Twomemo.encrypt_key_material()

	Twomemo.decrypt_plaintext()

	Twomemo.decrypt_key_material()

	Twomemo.signed_pre_key_age()

	Twomemo.rotate_signed_pre_key()

	Twomemo.hide_pre_key()

	Twomemo.delete_pre_key()

	Twomemo.delete_hidden_pre_keys()

	Twomemo.get_num_visible_pre_keys()

	Twomemo.generate_pre_keys()

	Twomemo.get_bundle()

	Twomemo.purge()

	Twomemo.purge_bare_jid()

	AEADImpl
	AEADImpl.AUTHENTICATION_TAG_TRUNCATED_LENGTH

	AEADImpl._get_hash_function()

	AEADImpl._get_info()

	AEADImpl.encrypt()

	AEADImpl.decrypt()

	AEADImpl.__annotations__

	BundleImpl
	BundleImpl.__init__()

	BundleImpl.namespace

	BundleImpl.bare_jid

	BundleImpl.device_id

	BundleImpl.identity_key

	BundleImpl.__eq__()

	BundleImpl.__hash__()

	BundleImpl.bundle

	BundleImpl.signed_pre_key_id

	BundleImpl.pre_key_ids

	ContentImpl
	ContentImpl.__init__()

	ContentImpl.empty

	ContentImpl.make_empty()

	ContentImpl.ciphertext

	DoubleRatchetImpl
	DoubleRatchetImpl.MESSAGE_CHAIN_CONSTANT

	DoubleRatchetImpl._build_associated_data()

	DoubleRatchetImpl.__annotations__

	EncryptedKeyMaterialImpl
	EncryptedKeyMaterialImpl.__init__()

	EncryptedKeyMaterialImpl.bare_jid

	EncryptedKeyMaterialImpl.device_id

	EncryptedKeyMaterialImpl.encrypted_message

	EncryptedKeyMaterialImpl.serialize()

	EncryptedKeyMaterialImpl.parse()

	KeyExchangeImpl
	KeyExchangeImpl.__init__()

	KeyExchangeImpl.identity_key

	KeyExchangeImpl.builds_same_session()

	KeyExchangeImpl.header

	KeyExchangeImpl.signed_pre_key_id

	KeyExchangeImpl.pre_key_id

	KeyExchangeImpl.is_network_instance()

	KeyExchangeImpl.serialize()

	KeyExchangeImpl.parse()

	MessageChainKDFImpl
	MessageChainKDFImpl._get_hash_function()

	PlainKeyMaterialImpl
	PlainKeyMaterialImpl.KEY_LENGTH

	PlainKeyMaterialImpl.__init__()

	PlainKeyMaterialImpl.key

	PlainKeyMaterialImpl.auth_tag

	PlainKeyMaterialImpl.make_empty()

	PlainKeyMaterialImpl.__annotations__

	RootChainKDFImpl
	RootChainKDFImpl._get_hash_function()

	RootChainKDFImpl._get_info()

	SessionImpl
	SessionImpl.__init__()

	SessionImpl.namespace

	SessionImpl.bare_jid

	SessionImpl.device_id

	SessionImpl.initiation

	SessionImpl.confirmed

	SessionImpl.key_exchange

	SessionImpl.receiving_chain_length

	SessionImpl.sending_chain_length

	SessionImpl.associated_data

	SessionImpl.double_ratchet

	SessionImpl.confirm()

	StateImpl
	StateImpl.INFO

	StateImpl.IDENTITY_KEY_ENCODING_LENGTH

	StateImpl._encode_public_key()

	StateImpl.__annotations__

Module: etree

Module: twomemo

	
class twomemo.twomemo.Twomemo(storage, max_num_per_session_skipped_keys=1000, max_num_per_message_skipped_keys=None)

	Bases: Backend

Backend implementation providing OMEMO in the urn:xmpp:omemo:2 namespace.

	Parameters

	
	storage (Storage) –

	max_num_per_session_skipped_keys (int) –

	max_num_per_message_skipped_keys (Optional[int]) –

	
__init__(storage, max_num_per_session_skipped_keys=1000, max_num_per_message_skipped_keys=None)

	
	Parameters

	
	storage (Storage) – The storage to store backend-specific data in. Note that all data keys are prefixed with
the backend namespace to avoid name clashes between backends.

	max_num_per_session_skipped_keys (int) – The maximum number of skipped message keys to keep around per
session. Once the maximum is reached, old message keys are deleted to make space for newer
ones. Accessible via max_num_per_session_skipped_keys.

	max_num_per_message_skipped_keys (Optional[int]) – The maximum number of skipped message keys to accept in a single
message. When set to None (the default), this parameter defaults to the per-session
maximum (i.e. the value of the max_num_per_session_skipped_keys parameter). This parameter
may only be 0 if the per-session maximum is 0, otherwise it must be a number between 1 and the
per-session maximum. Accessible via max_num_per_message_skipped_keys.

	Return type

	None

	
property namespace: str

	Returns:
The namespace provided/handled by this backend implementation.

	Return type

	str

	
async load_session(bare_jid, device_id)

	
	Parameters

	
	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	Return type

	Optional[SessionImpl]

	Returns

	The session associated with the device, or None if such a session does not exist.

Warning

Multiple sessions for the same device can exist in memory, however only one session per device can
exist in storage. Which one of the in-memory sessions is persisted in storage is controlled by
calling the store_session() method.

	
async store_session(session)

	Store a session, overwriting any previously stored session for the bare JID and device id this session
belongs to.

	Parameters

	session (Session) – The session to store.

	Return type

	None

	Returns

	Anything, the return value is ignored.

Warning

Multiple sessions for the same device can exist in memory, however only one session per device can
exist in storage. Which one of the in-memory sessions is persisted in storage is controlled by
calling this method.

	
async build_session_active(bare_jid, device_id, bundle, plain_key_material)

	Actively build a session.

	Parameters

	
	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	bundle (Bundle) – The bundle containing the public key material of the other device required for active
session building.

	plain_key_material (PlainKeyMaterial) – The key material to encrypt for the recipient as part of the initial key
exchange/session initiation.

	Return type

	Tuple[SessionImpl, EncryptedKeyMaterialImpl]

	Returns

	The newly built session, the encrypted key material and the key exchange information required by
the other device to complete the passive part of session building. The
initiation property of the returned session must return
ACTIVE. The key_exchange property
of the returned session must return the information required by the other party to complete its
part of the key exchange.

	Raises

	KeyExchangeFailed – in case of failure related to the key exchange required for session building.

Warning

This method may be called for a device which already has a session. In that case, the original
session must remain in storage and must remain loadable via load_session(). Only upon
calling store_session(), the old session must be overwritten with the new one. In summary,
multiple sessions for the same device can exist in memory, while only one session per device can
exist in storage, which can be controlled using the store_session() method.

	
async build_session_passive(bare_jid, device_id, key_exchange, encrypted_key_material)

	Passively build a session.

	Parameters

	
	bare_jid (str) – The bare JID the device belongs to.

	device_id (int) – The id of the device.

	key_exchange (KeyExchange) – Key exchange information for the passive session building.

	encrypted_key_material (EncryptedKeyMaterial) – The key material to decrypt as part of the initial key exchange/session
initiation.

	Return type

	Tuple[SessionImpl, PlainKeyMaterialImpl]

	Returns

	The newly built session and the decrypted key material. Note that the pre key used to initiate
this session must somehow be associated with the session, such that hide_pre_key() and
delete_pre_key() can work.

	Raises

	
	KeyExchangeFailed – in case of failure related to the key exchange required for session building.

	DecryptionFailed – in case of backend-specific failures during decryption of the initial message.

Warning

This method may be called for a device which already has a session. In that case, the original
session must remain in storage and must remain loadable via load_session(). Only upon
calling store_session(), the old session must be overwritten with the new one. In summary,
multiple sessions for the same device can exist in memory, while only one session per device can
exist in storage, which can be controlled using the store_session() method.

	
async encrypt_plaintext(plaintext)

	Encrypt some plaintext symmetrically.

	Parameters

	plaintext (bytes) – The plaintext to encrypt symmetrically.

	Return type

	Tuple[ContentImpl, PlainKeyMaterialImpl]

	Returns

	The encrypted plaintext aka content, as well as the key material needed to decrypt it.

	
async encrypt_empty()

	Encrypt an empty message for the sole purpose of session manangement/ratchet forwarding/key material
transportation.

	Return type

	Tuple[ContentImpl, PlainKeyMaterialImpl]

	Returns

	The symmetrically encrypted empty content, and the key material needed to decrypt it.

	
async encrypt_key_material(session, plain_key_material)

	Encrypt some key material asymmetrically using the session.

	Parameters

	
	session (Session) – The session to encrypt the key material with.

	plain_key_material (PlainKeyMaterial) – The key material to encrypt asymmetrically for each recipient.

	Return type

	EncryptedKeyMaterialImpl

	Returns

	The encrypted key material.

	
async decrypt_plaintext(content, plain_key_material)

	Decrypt some symmetrically encrypted plaintext.

	Parameters

	
	content (Content) – The content to decrypt. Not empty, i.e. Content.empty will return False.

	plain_key_material (PlainKeyMaterial) – The key material to decrypt with.

	Return type

	bytes

	Returns

	The decrypted plaintext.

	Raises

	DecryptionFailed – in case of backend-specific failures during decryption.

	
async decrypt_key_material(session, encrypted_key_material)

	Decrypt some key material asymmetrically using the session.

	Parameters

	
	session (Session) – The session to decrypt the key material with.

	encrypted_key_material (EncryptedKeyMaterial) – The encrypted key material.

	Return type

	PlainKeyMaterialImpl

	Returns

	The decrypted key material

	Raises

	
	TooManySkippedMessageKeys – if the number of message keys skipped by this message exceeds the upper
 limit enforced by max_num_per_message_skipped_keys.

	DecryptionFailed – in case of backend-specific failures during decryption.

Warning

Make sure to respect the values of max_num_per_session_skipped_keys and
max_num_per_message_skipped_keys.

Note

When the maximum number of skipped message keys for this session, given by
max_num_per_session_skipped_keys, is exceeded, old skipped message keys are deleted to
make space for new ones.

	
async signed_pre_key_age()

	
	Return type

	int

	Returns

	The age of the signed pre key, i.e. the time elapsed since it was last rotated, in seconds.

	
async rotate_signed_pre_key()

	Rotate the signed pre key. Keep the old signed pre key around for one additional rotation period, i.e.
until this method is called again.

	Return type

	None

	Returns

	Anything, the return value is ignored.

	
async hide_pre_key(session)

	Hide a pre key from the bundle returned by get_bundle() and pre key count returned by
get_num_visible_pre_keys(), but keep the pre key for cryptographic operations.

	Parameters

	session (Session) – A session that was passively built using build_session_passive(). Use this session
to identity the pre key to hide.

	Return type

	bool

	Returns

	Whether the pre key was hidden. If the pre key doesn’t exist (e.g. because it has already been
deleted), or was already hidden, do not throw an exception, but return False instead.

	
async delete_pre_key(session)

	Delete a pre key.

	Parameters

	session (Session) – A session that was passively built using build_session_passive(). Use this session
to identity the pre key to delete.

	Return type

	bool

	Returns

	Whether the pre key was deleted. If the pre key doesn’t exist (e.g. because it has already been
deleted), do not throw an exception, but return False instead.

	
async delete_hidden_pre_keys()

	Delete all pre keys that were previously hidden using hide_pre_key().

	Return type

	None

	Returns

	Anything, the return value is ignored.

	
async get_num_visible_pre_keys()

	
	Return type

	int

	Returns

	The number of visible pre keys available. The number returned here should match the number of pre
keys included in the bundle returned by get_bundle().

	
async generate_pre_keys(num_pre_keys)

	Generate and store pre keys.

	Parameters

	num_pre_keys (int) – The number of pre keys to generate.

	Return type

	None

	Returns

	Anything, the return value is ignored.

	
async get_bundle(bare_jid, device_id)

	
	Parameters

	
	bare_jid (str) – The bare JID of this XMPP account, to be included in the bundle.

	device_id (int) – The id of this device, to be included in the bundle.

	Return type

	BundleImpl

	Returns

	The bundle containing public information about the cryptographic state of this backend.

Warning

Do not include pre keys hidden by hide_pre_key() in the bundle!

	
async purge()

	Remove all data related to this backend from the storage.

	Return type

	None

	Returns

	Anything, the return value is ignored.

	
async purge_bare_jid(bare_jid)

	Delete all data corresponding to an XMPP account.

	Parameters

	bare_jid (str) – Delete all data corresponding to this bare JID.

	Return type

	None

	Returns

	Anything, the return value is ignored.

	
class twomemo.twomemo.AEADImpl

	Bases: AEAD

The AEAD used by this backend as part of the Double Ratchet. While this implementation derives from
doubleratchet.recommended.aead_aes_hmac.AEAD, it actually doesn’t use any of its code. This is
due to a minor difference in the way the associated data is built. The derivation only has symbolic value.

Can only be used with DoubleRatchetImpl, due to the reliance on a certain structure of the
associated data.

	
AUTHENTICATION_TAG_TRUNCATED_LENGTH: Final = 16

	

	
static _get_hash_function()

	
	Return type

	HashFunction

	
static _get_info()

	
	Return type

	bytes

	
async classmethod encrypt(plaintext, key, associated_data)

	
	Parameters

	
	plaintext (bytes) – The plaintext to encrypt.

	key (bytes) – The encryption key.

	associated_data (bytes) – Additional data to authenticate without including it in the ciphertext.

	Return type

	bytes

	Returns

	The ciphertext.

	
async classmethod decrypt(ciphertext, key, associated_data)

	
	Parameters

	
	ciphertext (bytes) – The ciphertext to decrypt.

	key (bytes) – The decryption key.

	associated_data (bytes) – Additional data to authenticate without including it in the ciphertext.

	Return type

	bytes

	Returns

	The plaintext.

	Raises

	
	AuthenticationFailedException – if the message could not be authenticated using the associated
 data.

	DecryptionFailedException – if the decryption failed for a different reason (e.g. invalid padding).

	
__annotations__ = {'AUTHENTICATION_TAG_TRUNCATED_LENGTH': 'Final'}

	

	
class twomemo.twomemo.BundleImpl(bare_jid, device_id, bundle, signed_pre_key_id, pre_key_ids)

	Bases: Bundle

Bundle implementation as a simple storage type.

	Parameters

	
	bare_jid (str) –

	device_id (int) –

	bundle (x3dh.Bundle) –

	signed_pre_key_id (int) –

	pre_key_ids (Dict[bytes, int]) –

	
__init__(bare_jid, device_id, bundle, signed_pre_key_id, pre_key_ids)

	
	Parameters

	
	bare_jid (str) – The bare JID this bundle belongs to.

	device_id (int) – The device id of the specific device this bundle belongs to.

	bundle (Bundle) – The bundle to store in this instance.

	signed_pre_key_id (int) – The id of the signed pre key referenced in the bundle.

	pre_key_ids (Dict[bytes, int]) – A dictionary that maps each pre key referenced in the bundle to its id.

	Return type

	None

	
property namespace: str

	
	Return type

	str

	
property bare_jid: str

	
	Return type

	str

	
property device_id: int

	
	Return type

	int

	
property identity_key: bytes

	
	Return type

	bytes

	
__eq__(other)

	Check an object for equality with this Bundle instance.

	Parameters

	other (object) – The object to compare to this instance.

	Return type

	bool

	Returns

	Whether the other object is a bundle with the same contents as this instance.

Note

The order in which pre keys are included in the bundles does not matter.

	
__hash__()

	Hash this instance in a manner that is consistent with __eq__().

	Return type

	int

	Returns

	An integer value representing this instance.

	
property bundle: Bundle

	Returns:
The bundle held by this instance.

	Return type

	Bundle

	
property signed_pre_key_id: int

	Returns:
The id of the signed pre key referenced in the bundle.

	Return type

	int

	
property pre_key_ids: Dict[bytes, int]

	Returns:
A dictionary that maps each pre key referenced in the bundle to its id.

	Return type

	Dict[bytes, int]

	
class twomemo.twomemo.ContentImpl(ciphertext)

	Bases: Content

Content implementation as a simple storage type.

	Parameters

	ciphertext (bytes) –

	
__init__(ciphertext)

	
	Parameters

	ciphertext (bytes) – The ciphertext to store in this instance.

	Return type

	None

Note

For empty OMEMO messages as per the specification, the ciphertext is set to an empty byte string.

	
property empty: bool

	Returns:
Whether this instance corresponds to an empty OMEMO message purely used for protocol stability
reasons.

	Return type

	bool

	
static make_empty()

	
	Return type

	ContentImpl

	Returns

	An “empty” instance, i.e. one that corresponds to an empty OMEMO message as per the specification.
The ciphertext stored in empty instances is a byte string of zero length.

	
property ciphertext: bytes

	Returns:
The ciphertext held by this instance.

	Return type

	bytes

	
class twomemo.twomemo.DoubleRatchetImpl

	Bases: DoubleRatchet

The Double Ratchet implementation used by this version of the specification.

	
MESSAGE_CHAIN_CONSTANT: Final = b'\x02\x01'

	

	
static _build_associated_data(associated_data, header)

	
	Parameters

	
	associated_data (bytes) – The associated data to prepend to the output. If the associated data is not
guaranteed to be a parseable byte sequence, a length value should be prepended to ensure that
the output is parseable as a unique pair (associated data, header).

	header (Header) – The message header to encode in a unique, reversible manner.

	Return type

	bytes

	Returns

	A byte sequence encoding the associated data and the header in a unique, reversible way.

	
__annotations__ = {'MESSAGE_CHAIN_CONSTANT': 'Final', '__aead': 'Type[AEAD]', '__diffie_hellman_ratchet': 'DiffieHellmanRatchet', '__max_num_skipped_message_keys': 'int', '__skipped_message_keys': 'SkippedMessageKeys'}

	

	
class twomemo.twomemo.EncryptedKeyMaterialImpl(bare_jid, device_id, encrypted_message)

	Bases: EncryptedKeyMaterial

EncryptedKeyMaterial implementation as a simple storage type.

	Parameters

	
	bare_jid (str) –

	device_id (int) –

	encrypted_message (doubleratchet.EncryptedMessage) –

	
__init__(bare_jid, device_id, encrypted_message)

	
	Parameters

	
	bare_jid (str) – The bare JID of the other party.

	device_id (int) – The device id of the specific device of the other party.

	encrypted_message (EncryptedMessage) – The encrypted Double Ratchet message to store in this instance.

	Return type

	None

	
property bare_jid: str

	
	Return type

	str

	
property device_id: int

	
	Return type

	int

	
property encrypted_message: EncryptedMessage

	Returns:
The encrypted Double Ratchet message held by this instance.

	Return type

	EncryptedMessage

	
serialize()

	
	Return type

	bytes

	Returns

	A serialized OMEMOAuthenticatedMessage message structure representing the content of this
instance.

	
static parse(authenticated_message, bare_jid, device_id)

	
	Parameters

	
	authenticated_message (bytes) – A serialized OMEMOAuthenticatedMessage message structure.

	bare_jid (str) – The bare JID of the other party.

	device_id (int) – The device id of the specific device of the other party.

	Return type

	EncryptedKeyMaterialImpl

	Returns

	An instance of this class, parsed from the OMEMOAuthenticatedMessage.

	Raises

	ValueError – if the data is malformed.

	
class twomemo.twomemo.KeyExchangeImpl(header, signed_pre_key_id, pre_key_id)

	Bases: KeyExchange

KeyExchange implementation as a simple storage type.

There are two kinds of instances:

	Completely filled instances

	Partially filled instances received via network

Empty fields are filled with filler values such that the data types and lengths still match expectations.

	Parameters

	
	header (x3dh.Header) –

	signed_pre_key_id (int) –

	pre_key_id (int) –

	
__init__(header, signed_pre_key_id, pre_key_id)

	
	Parameters

	
	header (Header) – The header to store in this instance.

	signed_pre_key_id (int) – The id of the signed pre key referenced in the header.

	pre_key_id (int) – The id of the pre key referenced in the header.

	Return type

	None

	
property identity_key: bytes

	
	Return type

	bytes

	
builds_same_session(other)

	
	Parameters

	other (KeyExchange) – The other key exchange instance to compare to this instance.

	Return type

	bool

	Returns

	Whether the key exchange information stored in this instance and the key exchange information
stored in the other instance would build the same session.

	
property header: Header

	Returns:
The header held by this instance.

	Return type

	Header

	
property signed_pre_key_id: int

	Returns:
The id of the signed pre key referenced in the header.

	Return type

	int

	
property pre_key_id: int

	Returns:
The id of the pre key referenced in the header.

	Return type

	int

	
is_network_instance()

	
	Return type

	bool

	Returns

	Returns whether this is a network instance. A network instance has all fields filled except for
the signed pre key and pre key byte data. The missing byte data can be restored by looking it up
from storage using the respective ids.

	
serialize(authenticated_message)

	
	Parameters

	authenticated_message (bytes) – The serialized OMEMOAuthenticatedMessage message structure to include with
the key exchange information.

	Return type

	bytes

	Returns

	A serialized OMEMOKeyExchange message structure representing the content of this instance.

	Raises

	ValueError – if the serialized OMEMOAuthenticatedMessage is malformed.

	
static parse(key_exchange)

	
	Parameters

	key_exchange (bytes) – A serialized OMEMOKeyExchange message structure.

	Return type

	Tuple[KeyExchangeImpl, bytes]

	Returns

	An instance of this class, parsed from the OMEMOKeyExchange, and the serialized
OMEMOAuthenticatedMessage extracted from the OMEMOKeyExchange.

	Raises

	ValueError – if the data is malformed.

Warning

The OMEMOKeyExchange message structure only contains the ids of the signed pre key and the pre key
used for the key exchange, not the full public keys. Since the job of this method is just parsing,
the X3DH header is initialized without the public keys here, and the code using instances of this
class has to handle the public key lookup from the ids. Use header_filled to check whether
the header is filled with the public keys.

	
class twomemo.twomemo.MessageChainKDFImpl

	Bases: KDF

The message chain KDF implementation used by this version of the specification.

	
static _get_hash_function()

	
	Return type

	HashFunction

	
class twomemo.twomemo.PlainKeyMaterialImpl(key, auth_tag)

	Bases: PlainKeyMaterial

PlainKeyMaterial implementation as a simple storage type.

	Parameters

	
	key (bytes) –

	auth_tag (bytes) –

	
KEY_LENGTH: Final = 32

	

	
__init__(key, auth_tag)

	
	Parameters

	
	key (bytes) – The key to store in this instance.

	auth_tag (bytes) – The authentication tag to store in this instance.

	Return type

	None

Note

For empty OMEMO messages as per the specification, the key is set to KEY_LENGTH
zero-bytes, and the auth tag is set to an empty byte string.

	
property key: bytes

	Returns:
The key held by this instance.

	Return type

	bytes

	
property auth_tag: bytes

	Returns:
The authentication tag held by this instance.

	Return type

	bytes

	
static make_empty()

	
	Return type

	PlainKeyMaterialImpl

	Returns

	An “empty” instance, i.e. one that corresponds to an empty OMEMO message as per the specification.
The key stored in empty instances is a byte string of KEY_LENGTH zero-bytes, and the auth
tag is an empty byte string.

	
__annotations__ = {'KEY_LENGTH': 'Final'}

	

	
class twomemo.twomemo.RootChainKDFImpl

	Bases: KDF

The root chain KDF implementation used by this version of the specification.

	
static _get_hash_function()

	
	Return type

	HashFunction

	
static _get_info()

	
	Return type

	bytes

	
class twomemo.twomemo.SessionImpl(bare_jid, device_id, initiation, key_exchange, associated_data, double_ratchet, confirmed=False)

	Bases: Session

Session implementation as a simple storage type.

	Parameters

	
	bare_jid (str) –

	device_id (int) –

	initiation (Initiation) –

	key_exchange (KeyExchangeImpl) –

	associated_data (bytes) –

	double_ratchet (DoubleRatchetImpl) –

	confirmed (bool) –

	
__init__(bare_jid, device_id, initiation, key_exchange, associated_data, double_ratchet, confirmed=False)

	
	Parameters

	
	bare_jid (str) – The bare JID of the other party.

	device_id (int) – The device id of the specific device of the other party.

	initiation (Initiation) – Whether this session was built through active or passive session initiation.

	key_exchange (KeyExchangeImpl) – The key exchange information to store in this instance.

	associated_data (bytes) – The associated data to store in this instance.

	double_ratchet (DoubleRatchetImpl) – The Double Ratchet to store in this instance.

	confirmed (bool) – Whether the session was confirmed, i.e. whether a message was decrypted after actively
initiating the session. Leave this at the default value for passively initiated sessions.

	
property namespace: str

	
	Return type

	str

	
property bare_jid: str

	
	Return type

	str

	
property device_id: int

	
	Return type

	int

	
property initiation: Initiation

	Returns:
Whether this session was actively initiated or passively.

	Return type

	Initiation

	
property confirmed: bool

	In case this session was built through active session initiation, this flag should indicate whether
the session initiation has been “confirmed”, i.e. at least one message was received and decrypted
using this session.

	Return type

	bool

	
property key_exchange: KeyExchangeImpl

	Either the key exchange information received during passive session building, or the key exchange
information created as part of active session building. The key exchange information is needed by the
protocol for stability reasons, to make sure that all sides can build the session, even if messages
are lost or received out of order.

	Return type

	KeyExchangeImpl

	Returns

	The key exchange information associated with this session.

	
property receiving_chain_length: Optional[int]

	Returns:
The length of the receiving chain, if it exists, used for own staleness detection.

	Return type

	Optional[int]

	
property sending_chain_length: int

	Returns:
The length of the sending chain, used for staleness detection of other devices.

	Return type

	int

	
property associated_data: bytes

	Returns:
The associated data held by this instance.

	Return type

	bytes

	
property double_ratchet: DoubleRatchetImpl

	Returns:
The Double Ratchet held by this instance.

	Return type

	DoubleRatchetImpl

	
confirm()

	Mark this session as confirmed.

	Return type

	None

	
class twomemo.twomemo.StateImpl

	Bases: BaseState

The X3DH state implementation used by this version of the specification.

	
INFO: Final = b'OMEMO X3DH'

	

	
IDENTITY_KEY_ENCODING_LENGTH: Final = 32

	

	
static _encode_public_key(key_format, pub)

	
	Parameters

	
	key_format (IdentityKeyFormat) – The format in which this public key is serialized.

	pub (bytes) – The public key.

	Return type

	bytes

	Returns

	An encoding of the public key, possibly including information about the curve and type of key,
though this is application defined. Note that two different public keys must never result in the
same byte sequence, uniqueness of the public keys must be preserved.

	
__annotations__ = {'IDENTITY_KEY_ENCODING_LENGTH': 'Final', 'INFO': 'Final', '__hash_function': 'HashFunction', '__hidden_pre_keys': 'Set[PreKeyPair]', '__identity_key': 'IdentityKeyPair', '__identity_key_format': 'IdentityKeyFormat', '__info': 'bytes', '__old_signed_pre_key': 'Optional[SignedPreKeyPair]', '__pre_keys': 'Set[PreKeyPair]', '__signed_pre_key': 'SignedPreKeyPair'}

	

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 twomemo	

 	
 	
 twomemo.twomemo	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T

_

 	
 	__annotations__ (twomemo.twomemo.AEADImpl attribute)

 	(twomemo.twomemo.DoubleRatchetImpl attribute)

 	(twomemo.twomemo.PlainKeyMaterialImpl attribute)

 	(twomemo.twomemo.StateImpl attribute)

 	__eq__() (twomemo.twomemo.BundleImpl method)

 	__hash__() (twomemo.twomemo.BundleImpl method)

 	__init__() (twomemo.twomemo.BundleImpl method)

 	(twomemo.twomemo.ContentImpl method)

 	(twomemo.twomemo.EncryptedKeyMaterialImpl method)

 	(twomemo.twomemo.KeyExchangeImpl method)

 	(twomemo.twomemo.PlainKeyMaterialImpl method)

 	(twomemo.twomemo.SessionImpl method)

 	(twomemo.twomemo.Twomemo method)

 	
 	_build_associated_data() (twomemo.twomemo.DoubleRatchetImpl static method)

 	_encode_public_key() (twomemo.twomemo.StateImpl static method)

 	_get_hash_function() (twomemo.twomemo.AEADImpl static method)

 	(twomemo.twomemo.MessageChainKDFImpl static method)

 	(twomemo.twomemo.RootChainKDFImpl static method)

 	_get_info() (twomemo.twomemo.AEADImpl static method)

 	(twomemo.twomemo.RootChainKDFImpl static method)

A

 	
 	AEADImpl (class in twomemo.twomemo)

 	associated_data (twomemo.twomemo.SessionImpl property)

 	
 	auth_tag (twomemo.twomemo.PlainKeyMaterialImpl property)

 	AUTHENTICATION_TAG_TRUNCATED_LENGTH (twomemo.twomemo.AEADImpl attribute)

B

 	
 	bare_jid (twomemo.twomemo.BundleImpl property)

 	(twomemo.twomemo.EncryptedKeyMaterialImpl property)

 	(twomemo.twomemo.SessionImpl property)

 	build_session_active() (twomemo.twomemo.Twomemo method)

 	
 	build_session_passive() (twomemo.twomemo.Twomemo method)

 	builds_same_session() (twomemo.twomemo.KeyExchangeImpl method)

 	bundle (twomemo.twomemo.BundleImpl property)

 	BundleImpl (class in twomemo.twomemo)

C

 	
 	ciphertext (twomemo.twomemo.ContentImpl property)

 	confirm() (twomemo.twomemo.SessionImpl method)

 	
 	confirmed (twomemo.twomemo.SessionImpl property)

 	ContentImpl (class in twomemo.twomemo)

D

 	
 	decrypt() (twomemo.twomemo.AEADImpl class method)

 	decrypt_key_material() (twomemo.twomemo.Twomemo method)

 	decrypt_plaintext() (twomemo.twomemo.Twomemo method)

 	delete_hidden_pre_keys() (twomemo.twomemo.Twomemo method)

 	delete_pre_key() (twomemo.twomemo.Twomemo method)

 	
 	device_id (twomemo.twomemo.BundleImpl property)

 	(twomemo.twomemo.EncryptedKeyMaterialImpl property)

 	(twomemo.twomemo.SessionImpl property)

 	double_ratchet (twomemo.twomemo.SessionImpl property)

 	DoubleRatchetImpl (class in twomemo.twomemo)

E

 	
 	empty (twomemo.twomemo.ContentImpl property)

 	encrypt() (twomemo.twomemo.AEADImpl class method)

 	encrypt_empty() (twomemo.twomemo.Twomemo method)

 	
 	encrypt_key_material() (twomemo.twomemo.Twomemo method)

 	encrypt_plaintext() (twomemo.twomemo.Twomemo method)

 	encrypted_message (twomemo.twomemo.EncryptedKeyMaterialImpl property)

 	EncryptedKeyMaterialImpl (class in twomemo.twomemo)

G

 	
 	generate_pre_keys() (twomemo.twomemo.Twomemo method)

 	
 	get_bundle() (twomemo.twomemo.Twomemo method)

 	get_num_visible_pre_keys() (twomemo.twomemo.Twomemo method)

H

 	
 	header (twomemo.twomemo.KeyExchangeImpl property)

 	
 	hide_pre_key() (twomemo.twomemo.Twomemo method)

I

 	
 	identity_key (twomemo.twomemo.BundleImpl property)

 	(twomemo.twomemo.KeyExchangeImpl property)

 	IDENTITY_KEY_ENCODING_LENGTH (twomemo.twomemo.StateImpl attribute)

 	
 	INFO (twomemo.twomemo.StateImpl attribute)

 	initiation (twomemo.twomemo.SessionImpl property)

 	is_network_instance() (twomemo.twomemo.KeyExchangeImpl method)

K

 	
 	key (twomemo.twomemo.PlainKeyMaterialImpl property)

 	key_exchange (twomemo.twomemo.SessionImpl property)

 	
 	KEY_LENGTH (twomemo.twomemo.PlainKeyMaterialImpl attribute)

 	KeyExchangeImpl (class in twomemo.twomemo)

L

 	
 	load_session() (twomemo.twomemo.Twomemo method)

M

 	
 	make_empty() (twomemo.twomemo.ContentImpl static method)

 	(twomemo.twomemo.PlainKeyMaterialImpl static method)

 	MESSAGE_CHAIN_CONSTANT (twomemo.twomemo.DoubleRatchetImpl attribute)

 	
 	MessageChainKDFImpl (class in twomemo.twomemo)

 	
 module

 	twomemo.twomemo

N

 	
 	namespace (twomemo.twomemo.BundleImpl property)

 	(twomemo.twomemo.SessionImpl property)

 	(twomemo.twomemo.Twomemo property)

P

 	
 	parse() (twomemo.twomemo.EncryptedKeyMaterialImpl static method)

 	(twomemo.twomemo.KeyExchangeImpl static method)

 	PlainKeyMaterialImpl (class in twomemo.twomemo)

 	
 	pre_key_id (twomemo.twomemo.KeyExchangeImpl property)

 	pre_key_ids (twomemo.twomemo.BundleImpl property)

 	purge() (twomemo.twomemo.Twomemo method)

 	purge_bare_jid() (twomemo.twomemo.Twomemo method)

R

 	
 	receiving_chain_length (twomemo.twomemo.SessionImpl property)

 	
 	RootChainKDFImpl (class in twomemo.twomemo)

 	rotate_signed_pre_key() (twomemo.twomemo.Twomemo method)

S

 	
 	sending_chain_length (twomemo.twomemo.SessionImpl property)

 	serialize() (twomemo.twomemo.EncryptedKeyMaterialImpl method)

 	(twomemo.twomemo.KeyExchangeImpl method)

 	SessionImpl (class in twomemo.twomemo)

 	
 	signed_pre_key_age() (twomemo.twomemo.Twomemo method)

 	signed_pre_key_id (twomemo.twomemo.BundleImpl property)

 	(twomemo.twomemo.KeyExchangeImpl property)

 	StateImpl (class in twomemo.twomemo)

 	store_session() (twomemo.twomemo.Twomemo method)

T

 	
 	Twomemo (class in twomemo.twomemo)

 	
 	
 twomemo.twomemo

 	module

 nav.xhtml

 Table of Contents

 		
 Twomemo - Backend implementation of the urn:xmpp:omemo:2 namespace for python-omemo.

 		
 Installation

 		
 Getting Started

 		
 API Documentation

 		
 Module: etree

 		
 Module: twomemo

 		
 Twomemo

 		
 AEADImpl

 		
 BundleImpl

 		
 ContentImpl

 		
 DoubleRatchetImpl

 		
 EncryptedKeyMaterialImpl

 		
 KeyExchangeImpl

 		
 MessageChainKDFImpl

 		
 PlainKeyMaterialImpl

 		
 RootChainKDFImpl

 		
 SessionImpl

 		
 StateImpl

_static/file.png

_static/minus.png

_static/plus.png

